skip to main content


Search for: All records

Creators/Authors contains: "Yama, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resonant enhancement of nonlinear photonic processes is critical for the scalability of applications such as long-distance entanglement generation. To implement nonlinear resonant enhancement, multiple resonator modes must be individually tuned onto a precise set of process wavelengths, which requires multiple linearly-independent tuning methods. Using coupled auxiliary resonators to indirectly tune modes in a multi-resonant nonlinear cavity is particularly attractive because it allows the extension of a single physical tuning mechanism, such as thermal tuning, to provide the required independent controls. Here we model and simulate the performance and tradeoffs of a coupled-resonator tuning scheme which uses auxiliary resonators to tune specific modes of a multi-resonant nonlinear process. Our analysis determines the tuning bandwidth for steady-state mode field intensity can significantly exceed the inter-cavity coupling rategif the total quality factor of the auxiliary resonator is higher than the multi-mode main resonator. Consequently, over-coupling a nonlinear resonator mode to improve the maximum efficiency of a frequency conversion process will simultaneously expand the auxiliary resonator tuning bandwidth for that mode, indicating a natural compatibility with this tuning scheme. We apply the model to an existing small-diameter triply-resonant ring resonator design and find that a tuning bandwidth of 136 GHz ≈ 1.1 nm can be attained for a mode in the telecom band while limiting excess scattering losses to a quality factor of 106. Such range would span the distribution of inhomogeneously broadened quantum emitter ensembles as well as resonator fabrication variations, indicating the potential for the auxiliary resonators to enable not only low-loss telecom conversion but also the generation of indistinguishable photons in a quantum network.

     
    more » « less
  2. We demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.1%/mW; is measured for conversion from telecom (1536 nm) and near infrared (1117 nm) to visible (647 nm) wavelengths with an absolute power conversion efficiency of 6.3 ± 0.6%; measured at saturation pump power. For the complementary difference frequency generation process, a single photon conversion efficiency of 7.2%/mW from visible to telecom is projected for resonators with optimized coupling. Efficient conversion from visible to telecom will facilitate long-distance transmission of spin-entangled photons from solid-state emitters such as the diamond NV center, allowing long-distance entanglement for quantum networks.

     
    more » « less
  3. Abstract

    The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.

     
    more » « less
  4. The robust spin and momentum valley locking of electrons in two-dimensional semiconductors makes the valley degree of freedom of great utility for functional optoelectronic devices. Owing to the difference in optical selection rules for the different valleys, these valley electrons can be addressed optically. The electrons and excitons in these materials exhibit the valley Hall effect, where the carriers from specific valleys are directed to different directions under electrical or thermal bias. Here we report the optical analog of valley Hall effect, where the light emission from the valley-polarized excitons in a monolayerWS2propagates in different directions owing to the preferential coupling of excitonic emission to the high momentum states of the hyperbolic metamaterial. The experimentally observed effects are corroborated with theoretical modeling of excitonic emission in the near field of hyperbolic media. The demonstration of the optical valley Hall effect using a bulk artificial photonic media without the need for nanostructuring opens the possibility of realizing valley-based excitonic circuits operating at room temperature.

     
    more » « less
  5. Abstract

    Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two‐dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high‐power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton‐polaritons presents an attractive approach to control optical responses without the need for large magnets or high‐intensity optical pump powers.

     
    more » « less